Selecting Optimal Subset to Release Under Differentially Private M-Estimators from Hybrid Datasets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentially Private M-Estimators

This paper studies privacy preserving M-estimators using perturbed histograms. The proposed approach allows the release of a wide class of M-estimators with both differential privacy and statistical utility without knowing a priori the particular inference procedure. The performance of the proposed method is demonstrated through a careful study of the convergence rates. A practical algorithm is...

متن کامل

Efficient, Differentially Private Point Estimators

Differential privacy is a recent notion of privacy for statistical databases that provides rigorous, meaningful confidentiality guarantees, even in the presence of an attacker with access to arbitrary side information. We show that for a large class of parametric probability models, one can construct a differentially private estimator whose distribution converges to that of the maximum likeliho...

متن کامل

Generating Differentially Private Datasets Using GANs

In this paper, we present a technique for generating artificial datasets that retain statistical properties of the real data while providing differential privacy guarantees with respect to this data. We include a Gaussian noise layer in the discriminator of a generative adversarial network to make the output and the gradients differentially private with respect to the training data, and then us...

متن کامل

Generating Differentially Private Datasets Using Gans

In this paper, we present a technique for generating artificial datasets that retain statistical properties of the real data while providing differential privacy guarantees with respect to this data. We include a Gaussian noise layer in the discriminator of a generative adversarial network to make the output and the gradients differentially private with respect to the training data, and then us...

متن کامل

Selecting Optimal Feature Template Subset for CRFs

Conditional Random Fields (CRFs) are the state-of-the-art models for sequential labeling problems. A critical step is to select optimal feature template subset before employing CRFs, which is a tedious task. To improve the efficienc y of t his step, we propose a new method that adopts the maximum entropy (ME) model and maximum entropy Markov models (MEMMs) instead of CRFs considering the homolo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2018

ISSN: 1041-4347

DOI: 10.1109/tkde.2017.2773545